國立臺北科技大學九十九學年度碩士班招生考試

系所組別:2320 資訊工程系碩士班乙組

第一節 工程數學 試題

第一頁 共一頁

注意事項:

- 1. 本試題共 6 題,配分共 100 分。
- 2. 請標明大題、子題編號作答,不必抄題。
- 3. 全部答案均須在答案卷之答案欄內作答,否則不予計分
- 1. (10%) Let $A = \begin{bmatrix} 2 & 3 \\ 3 & 2 \end{bmatrix}$. Orthogonally diagonalize A.
- 2. (20%, 5% each) $A = \begin{bmatrix} 1 & 2 & -5 & 11 & -3 \\ 2 & 4 & -5 & 15 & 2 \\ 1 & 2 & 0 & 4 & 5 \\ 3 & 6 & -5 & 19 & -2 \end{bmatrix}$
 - a. Row reduce A to its reduced echelon form.
 - b. Find a basis for Col A, where Col A is the column space of A. Also, find a basis for Row A, where Row A is the row space of A. Are rows of A linearly independent?
 - c. Find a basis for Nul A, where Nul A is the null space of A.
 - d. Evaluate rank(A), dim Nul A, $rank(A^T)$, and dim Nul A^T , respectively.
- 3. (20%, 10% each) Let $\mathbf{y} = \begin{bmatrix} 4 & 2 & 0 \end{bmatrix}^T$ and $W = \operatorname{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$ where \mathbf{u}_1 and \mathbf{u}_2 are specified below. Suppose that $\mathbf{y} = \hat{\mathbf{y}} + z$ where $\hat{\mathbf{y}}$ is in W and \mathbf{z} is in W^{\perp} (W^{\perp} is the orthogonal complement of W).
 - a. If $\mathbf{u}_1 = \begin{bmatrix} 2 & -1 & 3 \end{bmatrix}^T$ and $\mathbf{u}_2 = \begin{bmatrix} 1 & -1 & -1 \end{bmatrix}^T$. Is $\{\mathbf{u}_1, \mathbf{u}_2\}$ an orthogonal basis for W? Find $\hat{\mathbf{y}}$ and \mathbf{z} accordingly.
 - b. If $\mathbf{u}_1 = \begin{bmatrix} 1 & 2 & 0 \end{bmatrix}^T$ and $\mathbf{u}_2 = \begin{bmatrix} 0 & 1 & -1 \end{bmatrix}^T$. Is $\{\mathbf{u}_1, \mathbf{u}_2\}$ an orthogonal basis for W? Find $\hat{\mathbf{v}}$ and \mathbf{z} accordingly.

- 4. (10%, 5% each) Throw a pair of fair dice. Let X_1 be the outcome of the first die and X_2 be the outcome of the second die. Let A be the event $X_1 < 4$ and B be the event $X_1 + X_2 > 9$.
 - a. Calculate P(A) and P(B).
 - b. Are A and B independent? Why?
- 5. (20%) Suppose that the probability density function of a random variable X is given by

$$f_X(x) = \begin{cases} kx, & 0 \le x \le 1 \\ 0, & \text{otherwise} \end{cases}$$

- a. Find the value of k. (5%)
- b. Evaluate the variance of X. (5%)
- c. If X is rounded to its nearest integer (0 or 1), find the average squared quantization error. (10%)
- 6. (20%) Consider a pair of random variables X and Y with joint probability density function given by

$$f_{XY}(x,y) = \begin{cases} kxy, & 0 \le x, y \le 1 \\ 0, & \text{otherwise} \end{cases}$$

- a. Find the constant k. (5%)
- b. Are X and Y independent? Why? (5%)
- c. Let Z = X + Y. Find $f_Z(z)$, the probability density function of Z. (10%)